Mathematischer Brückenkurs (Mathe/Info) Antworten zum Übungsblatt 6 DR. ANTON MALEVICH

Aufgaben des Präsenzblattes

Aufgabe 6.1 a) 6, b) $2\sqrt{2}$, c) $3\sqrt{2}$, d) $6\sqrt{2}$, e) $\frac{1}{3}\sqrt{6}$, f) $\frac{1}{2}\sqrt{30}$.

Aufgabe 6.2 a) $\frac{1}{2}\sqrt[3]{2}$, b) $\frac{1}{7}$, c) $\frac{6}{5}$, d) $\frac{1}{5}\sqrt[3]{15}$.

Aufgabe 6.3 a) 2^{243} , b) $2 \cdot 6^x$.

Aufgabe 6.4

$$\log_3 \frac{2}{9} - \log_3 \frac{8}{27} = \log_3 \frac{\left(\frac{2}{9}\right)}{\left(\frac{8}{27}\right)} = \log_3 \frac{2 \cdot 27}{9 \cdot 8} = \log_3 \frac{3}{4} \left[= -\log_3 \frac{4}{3} \right]$$
$$= \log_3 3 - \log_3(2^2) = 1 - 2\log_3 2.$$

- b) 0,
- c) $\frac{3}{2}$.

Aufgabe 6.5 d) Hier ist die Idee so umzuformen, dass am Ende ein Ausdruck der Form $b + \log_a(x - d)$ steht. Der Graph von $y = b + \log_a(x - d)$ ist dann der um dnach rechts und um b nach oben verschobene Graph von $y = \log_a x$. Man könnte wie folgt vorgehen:

$$\begin{split} \log_{\frac{2}{3}}(4x) &= \log_{\frac{2}{3}} 4 + \log_{\frac{2}{3}} x \\ &= \log_{\frac{2}{3}} x + \frac{\log_2 4}{\log_2(\frac{2}{3})} \\ &= \log_{\frac{2}{3}} x + \frac{2}{\log_2 2 - \log_2 3} = \log_{\frac{2}{3}} x + \frac{2}{1 - \log_2 3}. \end{split}$$

Es gilt $\log_2 3 \approx 1.6$ und somit $\frac{2}{1 - \log_2 3} \approx -3.3$.

Aufgabe 6.6 a) wahr, b) wahr, c) falsch.

Aufgaben des Extrablattes

Aufgabe 6.1

a) $4\sqrt{6}$,

d) $12\sqrt{2}$,

g) 720,

j) $\frac{2}{27}\sqrt{2}$,

b) $7\sqrt{3}$,

e) $5\sqrt{6}$,

h) -1000, k) $\frac{1}{5}\sqrt{30}$,

c) $11\sqrt{2}$,

f) $-42\sqrt{6}$.

i) $\frac{3}{4}$,

1) $2\sqrt{2}$.

Aufgabe 6.2

a) $\frac{1}{5}\sqrt[7]{5^5}$, c) $\frac{1}{3}\sqrt[5]{3}$, e) $4\sqrt[12]{2}$, g) 7,

i) $\sqrt[3]{3}$,

b) $\frac{1}{3}\sqrt{3}$, d) $\sqrt[6]{32}$, f) $3\sqrt[20]{3^{11}}$, h) $\sqrt[6]{2}$,

j) $\sqrt[4]{2}$.

Aufgabe 6.3 a) 3^{x-1} , b) 10^{4x+2} , c) 4^{x+1} .

Aufgabe 6.4 a) $6(\log_5 2)^2$, b) $7\log_{10} 2$, c) $\log_2 15$.